skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dlugosch, Katrina_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Invasive species offer outstanding opportunities to identify the genomic sources of variation that contribute to rapid adaptation, as well as the genetic mechanisms facilitating invasions. The Eurasian plant yellow starthistle (Centaurea solstitialis) is highly invasive in North and South American grasslands and known to have evolved increased growth and reproduction during invasion. Here, we develop new genomic resources for C. solstitialis and map the genetic basis of invasiveness traits. We present a chromosome-scale (1N = 8) reference genome using PacBio CLR and Dovetail Omni-C technologies, and functional gene annotation using RNAseq. We find repeat structure typical of the family Asteraceae, with over 25% of gene content derived from ancestral whole-genome duplications (paleologs). Using an F2 mapping population derived from a cross between native and invading parents, with a restriction site-associated DNA (RAD)-based genetic map, we validate the assembly and identify 13 quantitative trait loci underpinning size traits that have evolved during invasion. We find evidence that large effects of quantitative trait loci may be associated with structural variants between native and invading genotypes, including a variant with an overdominant and pleiotropic effect on key invader traits. We also find evidence of significant paleolog enrichment under two quantitative trait loci. Our results add to growing evidence of the importance of structural variants in evolution, and to understanding of the rapid evolution of invaders. 
    more » « less
  2. ABSTRACT The importance of biota to soil formation and landscape development is widely recognized. As biotic complexity increases during early succession via colonization by soil microbes followed by vascular plants, effects of biota on mineral weathering and soil formation become more complex. Knowledge of the interactions among groups of organisms and environmental conditions will enable us to better understand landscape evolution. Here, we used experimental columns of unweathered granular basalt to investigate how early successional soil microbes, vascular plants (alfalfa;Medicago sativa), and soil moisture interact to affect both plant performance and mineral weathering. We found that the presence of soil microbes reduced plant growth rates, total biomass, and survival, which suggests that plants and microbes were competing for nutrients in this environment. However, we also found considerable genotype‐specific variation in plant–microbial interactions, which underscores the importance of within‐species genetic variation on biotic interactions. We also found that the presence of vascular plants reduced variability in pH and electrical conductivity, suggesting that plants may homogenize weathering reactions across the soil column. We also show that there is heterogeneity in the abiotic conditions in which microbes, plants, or their combination have the strongest effect on weathering, and that many of these relationships are sensitive to soil moisture. Our findings highlight the importance of interdependent effects of environmental and biotic factors on weathering during initial landscape formation. 
    more » « less
  3. PremiseLarge‐scale projects such as the National Ecological Observatory Network (NEON) collect ecological data on entire biomes to track climate change. NEON provides an opportunity to launch community transcriptomic projects that ask integrative questions in ecology and evolution. We conducted a pilot study to investigate the challenges of collecting RNA‐seq data from diverse plant communities. MethodsWe generated >650 Gbp of RNA‐seq for 24 vascular plant species representing 12 genera and nine families at the Harvard Forest NEON site. Each species was sampled twice in 2016 (July and August). We assessed transcriptome quality and content with TransRate, BUSCO, and Gene Ontology annotations. ResultsOnly modest differences in assembly quality were observed across multiplek‐mers. On average, transcriptomes contained hits to >70% of loci in the BUSCO database. We found no significant difference in the number of assembled and annotated transcripts between diploid and polyploid transcriptomes. DiscussionWe provide new RNA‐seq data sets for 24 species of vascular plants in Harvard Forest. Challenges associated with this type of study included recovery of high‐quality RNA from diverse species and access to NEON sites for genomic sampling. Overcoming these challenges offers opportunities for large‐scale studies at the intersection of ecology and genomics. 
    more » « less
  4. PremiseTagSeq is a cost‐effective approach for gene expression studies requiring a large number of samples. To date, TagSeq studies in plants have been limited to those with a high‐quality reference genome. We tested the suitability of reference transcriptomes for TagSeq in non‐model plants, as part of a study of natural gene expression variation at the Santa Rita Experimental Range National Ecological Observatory Network (NEON) core site. MethodsTissue for TagSeq was sampled from multiple individuals of four species (Bouteloua aristidoidesandEragrostis lehmanniana[Poaceae],Tidestromia lanuginosa[Amaranthaceae], andParkinsonia florida[Fabaceae]) at two locations on three dates (56 samples total). One sample per species was used to create a reference transcriptome via standard RNA‐seq. TagSeq performance was assessed by recovery of reference loci, specificity of tag alignments, and variation among samples. ResultsA high fraction of tags aligned to each reference and mapped uniquely. Expression patterns were quantifiable for tens of thousands of loci, which revealed consistent spatial differentiation in expression for all species. DiscussionTagSeq using de novo reference transcriptomes was an effective approach to quantifying gene expression in this study. Tags were highly locus specific and generated biologically informative profiles for four non‐model plant species. 
    more » « less